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1. Introduction. 

 We consider differential equations of the form 

 
d
2
w

dz
2
= u

2
f z( ) + g z( ){ }w , (1.1) 

where u is large and z lies in a real or complex region D containing at most 

one transition point z
0

 (pole or zero of f). Many of the special functions of 

mathematical physics satisfy ODEs of this form, as well as various one-

dimensional quantum mechanical problems.  
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Olver (1974/1997) identifies 3 main cases: 

Case I: D is free from transition points (Liouville-Green/WKBJ 

approximations). 

Case II: z
0

is a simple zero of f and g is analytic at z
0

. 

Case III: z
0

is a simple pole of f and z ! z
0( )
2
g z( )  is analytic at z

0
. 

 In the 60s and 70s Olver provided explicit error bounds for 

asymptotic solutions in Cases I, II, III and gave conditions for uniform 

validity when D is unbounded.  

 For Case I the standard expansions are of the form 

 w ~ f
!1/4

exp ±u"{ }
As "( )

u
s

s=0

#

$ , (1.2) 

where 

 ! = f
1/2

z( )dz" , (1.3) 

A
0
!( ) = 1 , with the other coefficients satisfying the linear recursion relation 

 A
s+1 !( ) = " 1

2
#As !( ) + 1

2
$ !( )As !( )d!% s & 0( ) . (1.4) 
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 In quantum mechanics alternative expansions of the form 

 w ~ f
!1/4

exp ±u" + ±1( )
s Es "( )

u
s

s=0

#

$
%
&
'

('

)
*
'

+'
, (1.5) 

are often more suitable in finding certain eigenvalues. Here 

E
1
!( ) = 1

2
" !( )d!# , and the other coefficients satisfy the nonlinear 

recursion relation 

 Es+1 !( ) = " 1

2
#Es !( ) " 1

2
#Ej !( ) #Es" j !( )d$%

j=1

s"1

& s ' 1( ) . (1.6) 

Error bounds, using Olver’s technique, were given by Dunster (1998). 

 For Case II we start with the Liouville transformation 

 2

3
! 3/2

= f
1/2

t( )dt
z

0

z

" ,   W =
f z( )

!
#
$%

&
'(

1/4

w , (1.7) 

to give 

 
d
2
W

d! 2
= u

2! +" !( ){ }W , (1.8) 

where ! "( )  is analytic at ! = 0  ( z = z
0

).  
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 The comparison equation !!W = u
2"W  has a solution 

W u,!( ) = Ai u2/3!( ) , and Olver’s expansions are of the form 

 

W2n+1,2 u,!( ) = Ai u2/3!( )
A
s
!( )

u
2s

s=0

n

"

+
A #i u

2/3!( )
u
4 /3

B
s
!( )

u
2s

s=0

n$1

" + %2n+1,2 u,!( ).

 (1.9) 

Olver obtained explicit bounds for !2n+1,2 u,"( )  by expressing this error 

term as a solution of an integral equation and then using successive 

approximations. This is nicely packaged in his following theorem. 

Theorem 1. Let h !( )  satisfy 

 
 
h !( ) = K ! ,t( )" t( ) J t( ) + h t( ){ }dt

#

!

$ . (1.10) 

Assume 

 
 
K ! ,!( ) = 0,  K ! ,t( ) " P0 !( )Q t( )  # < t " ! < $( ) , (1.11) 

where ! t( ),  J t( ),  " 0 t( ),  P0 #( ),  Q t( )  are continuous on !,"( ) . Then 

 
 

h !( ) " # /# 0( )P0 !( ) exp # 0 $ t( ) dt
%

!

&{ } '1
(
)*

+
,-
,   .h !( ) "!, (1.12) 

where 

 ! = sup Q "( ) J "( ){ },   ! 0 = sup P0 "( )Q "( ){ } . (1.13) 
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 In his 1950 paper T. M. Cherry (a.k.a. Professor Sir Thomas 

MacFarland Cherry, Kt., Sc.D., F.A.A., F.R.S.) approached the problem of 

approximating solutions to the same equation 

 
d
2
W

d! 2
= u

2! +" !( ){ }W , (1.14) 

by defining a new independent variable 

 
!
!̂ = ! +"

n
u,!( ) , (1.15) 

where 

 

!

"
n
u,!( ) =

a
s
!( )

u
2s

s=1

n

" . (1.16) 

Cherry then obtained a new ODE with ˆ!  as the independent variable. This 

makes it a little harder to obtain error bounds, as well as describe regions of 

validity in the complex plane in terms of !. Hence our approach, as follows.  

 For brevity we only consider real variables (complex variables done 

similarly). We assume u is sufficiently large so that d ˆ! / d! > 0 , i.e. 

 1+
!a
s
"( )

u
2s

s=1

n

# > 0 . (1.17) 
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Now w = Ai
n
u,!( ) = d!̂ / d!{ }

"1/2
Ai u

2/3!̂( )  satisfies 

 
d
2
w

d! 2
= u

2! + "̂
n
u,!( ){ }w , (1.18) 

where 

 !̂
n
u,"( ) =

!̂
n,s "( )

u
2s

s=0

#

$ . (1.19) 

We choose a
s
!( )  (

 
s = 1,2,3,!n ) so that !̂

n
=! +O u

"2n( ) . Thus 

 
 
!̂
n,0 "( ) =! "( ),  !̂

n,1 "( ) = !̂ n,2 "( ) =! = !̂
n,n#1 "( ) = 0 . (1.20) 

This gives 

 a
1
!( ) =

1

2!1/2
" t( )

t
1/2

dt
0

!

# , (1.21) 

and for 1 ! s ! n "1  

 a
s+1 !( ) =

1

2!1/2
F
s
t( )

t
1/2

dt
0

!

" , (1.22) 
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where 

 

 !

F
s
!( ) =

1

2"i

2"
s
+ ! +"

s( ) #"
s{ } #"

s

w
s+2

$

%
&
&w ='
!(

+
2 1+ #"

s( ) ###"
s
) 3 ##"

s

2

4 1+ #"
s( )
2
w
s+1

*

+
,
,
dw,

 (1.23) 

 

!

"s = aj !( )w j

j=1

s

" ,   #"s = #aj !( )w j

j=1

s

" ,  etc.  (1.24) 

From this is it easy to show by induction that each coefficient a
s
!( )  is 

analytic at ! = 0 , and from the subsequent error bounds that the asymptotic 

expansions are uniformly valid at infinity if ! s( ) "( ) = O "
#s# 1/2( )#$( )  as 

! " ±# . 

 Let 

 Ŵ2n+1,2 u,!( ) = d!̂ / d!( )
"1/2

Ai u
2/3!̂( ) + #̂2n+1,2 u,!( )  (1.25) 

be a solution of the canonical turning point equation 

!!W = u
2" +# "( ){ }W . This is a useful form when studying the zeros. 
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Substitution of (1.25) into the ODE, then applying variation parameters, 

yields 

 
 
h !( ) = K ! ,t( )" t( ) J t( ) + h t( ){ }dt

#

!

$ , (1.26) 

where 

 h !( ) = d!̂ / d!( )
1/2

"̂2n+1,2 u,!( ) , (1.27) 

 J !( ) = Ai u2/3 ˆ!( ) , (1.28) 

 ! "( ) = d
ˆ" / d"( )

#3/2
ˆ"1/2 $̂

n
"( ) #$ "( ){ } = O u

#2n( ) , (1.29) 

and 

 
K ! ,t( ) = "u#1 u2/3t̂( )

1/2

Bi u
2/3!̂( )Ai u2/3t̂( ) # Ai u2/3!̂( )Bi u2/3t̂( )$

%
&
' , (1.30) 

in which t̂ = t + a
s
t( )u!2s

s=1

n

" . 

 We need 
 
K ! ,t( ) " P0 !( )Q t( )  for t ! " .  
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Let c be the largest negative root of Ai x( ) = Bi x( ) ; then Olver defines a so-

called weight function by 

 E x( )=1  !" < x # c( ),   E x( )= Bi x( ) /Ai x( ){ }
1/2

  c # x < "( ) , (1.31) 

and the Airy functions are then expressed in the form 

 Ai x( ) = E!1
x( )M x( )sin " x( ){ },   Bi x( ) = E x( )M x( )cos " x( ){ } . (1.32) 

As x!"  

 E x( ) ~ 2 exp 2
3
x

3/2{ },   M x( ) ~ !
"1/2

x
"1/4

. (1.33) 

From these expressions it can be shown that 

 

 

K ! ,t( ) " E#1
u

2/3!̂( )M u
2/3!̂( )

$ % / u( ) u2/3
t̂

1/2

E u
2/3
t̂( )M u

2/3
t̂( )   t & !( ).

 (1.34) 
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Using Theorem 1 we arrive at our desired bound 

 

!̂2n+1,2 u,"( ) #
d"̂
d"

$

%
&

'

(
)

*1/2
E
*1
u
2/3"̂( )M u

2/3"̂( )
+

, exp

+ -
n
u,t( ) dt

"

.
/

u

0

1
2

3
2

4

5
2

6
2
*1

7

8

9
9
9

:

;

<
<
<
,

 (1.35) 

uniformly for ! < " < # , where 

 !
n
u,t( ) = d"̂ / d"( )

#3/2
"̂1/2 $̂

n
"( ) #$ "( ){ } = O u

#2n( ) , (1.36) 

and 

 
 

! = sup
"#<x<#

$ x
1/2
M
2
x( ){ } = 1.04! . (1.37) 

This shows 

 !̂2n+1,2 u,"( ) = E#1
u
2/3"̂( )M u

2/3"̂( )O u
#2n#1( ) , (1.38) 

uniformly for ! < " < #  (which can be unbounded with appropriate 

conditions on ! "( ) ). 
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 Now let’s consider the derivative of a solution of an ODE having a 

turning point (c.f. Wong and Lang (1990)). We assume the parent equation 

is of the form 

 
d
2
y

dz
2
+ h z( )

dy

dz
! u

2
f z( )y = 0 , (1.39) 

where as before f has a simple zero at z
0

. Dividing by f z( )  and 

differentiating yields a linear 2nd order ODE for !y = dy / dz . We obtain an 

ODE without the first derivative by defining 

 
 

!w z( ) = f
!1/2

z( )exp 1
2
h z( )dz"{ } #y z( ) , (1.40) 

to arrive at 

 
 
d
2
!w / dz

2
= u

2
f z( ) + !g z( ){ } !w , (1.41) 

where 

 

 

!g z( ) =
3 !f

2
z( )

4 f
2
z( )

+
!f z( )h z( ) " !!f z( )

2 f z( )
+
1

4
h
2
z( ) "

1

2
!h z( ) . (1.42) 

Note that as z! z
0

 

 

 

!g z( ) =
3

4 z ! z
0( )
2
+O

1

z ! z
0

"

#$
%

&'
. (1.43) 
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 Again we use 

 2

3
! 3/2 = f

1/2
t( )dt

z
0

z

" , (1.44) 

and 

 
 

!W !( ) = f z( ) /!( )
1/4
!w z( ) = ! f z( )( )

"1/4
exp 1

2
h z( )dz#{ } $y z( ) , (1.45) 

to obtain 

 

 

d
2 !W

d! 2
= u

2! +
3

4! 2
+
!" !( )
!

#
$
%

&
'
(
!W , (1.46) 

where 
 
!! "( )  is analytic at ! = 0 . 

 The comparison equation 

 

 

d
2 !W

d! 2
= u

2! +
3

4! 2
"
#
$

%
&
'
!W , (1.47) 

has a solution 
 

!W = ! "1/2
A #i u

2/3!( ) . 
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 We need a companion solution to (1.47) which is recessive at ! = 0 , 

and for brevity we consider 0 < ! < "  here. Using 

 A !i z( ) = A !i 0( ) + 1

2
Ai 0( )z2 +O z

3( ) , (1.48) 

 B !i z( ) = B !i 0( ) + 1

2
Bi 0( )z2 +O z

3( ) , (1.49) 

we define 

 Di z( ) =
B !i 0( )Ai z( ) " A !i 0( )Bi z( )

B !i
2
0( ) + A !i

2
0( )

=
3

2
Ai z( ) +

1

2
Bi z( ) , (1.50) 

with the desired property 

 D !i z( ) =
1

2 3
1/6( )" 2

3( )
z
2
+O z

5( ) . (1.51) 

Thus ! "1/2
D #i u

2/3!( )  is the solution we seek. Let 

 
 

!W2 u,!( ) = ! "1/2
A #i u

2/3!( ) + !$2 u,!( ) , (1.52) 

be a solution of 

 

 

d
2 !W

d! 2
= u

2! +
3

4! 2
+
!" !( )
!

#
$
%

&
'
(
!W . (1.53) 
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We find 

 

  

!!2 u,"( ) =
2#

u
4 /3

!K " ,t( )
!$ t( )

u
%1
+ t

3/2( )
A &i u

2/3
t( ) + !!2 u,t( ){ }dt"

'

( , (1.54) 

where 

 
 
!!2 u,"( ) = "1/2 !#2 u,"( ) , (1.55) 

with 

 
  

!K ! ,t( ) " u
#1
+ t

3/2( )t#2
A $i u

2/3!( ) D $i u
2/3
t( )   t % !( ) . (1.56) 

The artificial factor u
!1
+ t

3/2( )  is a balancing function, introduced to 

sharpen the error bound. Using Theorem 1 we get 

 

 

!!2n+1,2 u,"( ) # 2$ A %i u
2/3"( ) exp

!&' u,"( )
u

(
)
*

+*

,
-
*

.*
/1

0

1
2
2

3

4
5
5

, (1.57) 

where 

 
 

!! = sup
0<x<"

x
#2 1+ x3/2( ) A $i x( ) D $i x( ){ } = 0.1059", (1.58) 
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and 

 

 

! u,"( ) =
!# t( )

u
$1
+ t

3/2( )
dt

"

%

& . (1.59) 

If 0 < ! " # < $  then 

 
 

! u,"( ) #
!$ t( )

t
3/2

dt
%

&

' = O 1( ) . (1.60) 

Otherwise we have 

 

 

! u,"( ) #
!$ t( )

u
%1
+ t

3/2( )
dt

0

&

' +
!$ t( )

u
%1
+ t

3/2( )
dt

&

(

'

= u
1/3

!$ u
%2/3

t( )
1+ t

3/2( )
dt

0

u
2/3&

' +
!$ t( )

u
%1
+ t

3/2( )
dt

&

(

'

# u1/3
M

1+ t
3/2( )

dt
0

)

' +
!$ t( )

t
3/2

dt
&

(

' = O u
1/3( ),

 (1.61) 

where 

 

M = sup
0!t!"

!# t( ) . 
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 In summary there is a solution y
2

 (say) whose derivative satisfies 

 

 

!y2 z( ) =
f z( )

"
#
$%

&
'(

1/4

exp ) 1
2
h z( )dz*{ } A !i u

2/3"( ) + !+2 u,"( ){ } , (1.62) 

where 

 

 

!!2n+1,2 u,"( ) =
A #i u

2/3"( )O u
$2/3( ) 0 % " % &( )

A #i u
2/3"( )O u

$1( ) 0 < & % " < '( )

(
)
*

+*
. (1.63) 

Application to Bessel functions. The equation 

 

 

d
2
!w

dx
2
= ! 2

1" x2

x
2

+
3x

4
+10x

2 "1

4x
2
1" x2( )

2

#

$
%

&
%

'

(
%

)
%
!w , (1.64) 

has a solution 

 
 
!w x( ) = x3/2 1! x2( )

!1/2

"J# #x( ) . (1.65) 
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Let 

 2

3
! 3/2 = ln

1+ 1" x2( )
1/2

x

#

$
%

&%

'

(
%

)%
" 1" x2( )

1/2

, (1.66) 

with 0 < x ! 1  mapped to 0 ! " < # . Then with 

 

!W = x
!1/2

1! x2( )
1/4

" !1/4
!w  we get 

 

 

d
2 !W

d! 2
= " 2! +

3

4! 2
+
!# !( )
!

$
%
&

'
(
)
!W , (1.67) 

where 
 
!! "( )  is analytic at ! = 0 . We arrive at 

 

 

!J" "x( ) = #
2 $""# 1/6( )

e
#"

x% " +1( )

1# x2

&

'

()
*

+,

1/4

A !i " 2/3&( ) + !-2 ",&( ){ } , (1.68) 

where 
 
!!2 ",#( )  is bounded as above, uniformly for 0 ! " < # . The interval 

!" < # $ 0  is similarly treated. 
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Less sharp and more complicated error bounds can also be computed by 

differentiating the original uniform approximations of Olver 

 J! !x( ) =
2 "!!+ 1/6( )

e
#!

$ ! +1( )

%
1# x2

&
'(

)
*+
1/4

Ai ! 2/3%( ) + ,Olver !,%( ){ } , (1.69) 

 giving 

 !J" "x( ) = #
2 $""# 1/6( )

e
#"

x% " +1( )

1# x2

&

'

()
*

+,

1/4

A !i " 2/3&( ) +-Olver ",&( ){ }  (1.70) 

where 

 

!Olver ",#( ) =
1

4" 2/3
1

#
$
2x

2#1/2

1$ x2( )
3/2

%

&

'
'
'

(

)

*
*
*

Ai " 2/3#( ) + +Olver ",#( ){ }

+
,+Olver ",#( )

" 2/3
.

 (1.71) 

 Comparisons of relative error bounds vs. exact values (! = 100 ): 
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If we try a Cherry-type expansion: 

 
 

!W = d
ˆ! / d!( )

"1/2
ˆ! "1/2

A #i u
2/3 ˆ!( ) , (1.72) 

we find it satisfies 

 
d
2
Ŵ

d! 2
= u

2 ˆ"! 2 ˆ! +
3
ˆ"! 2

4
ˆ! 2

+
3
ˆ""! 2 # 2 ˆ"! ˆ"""!

4
ˆ"! 2

$
%
&

'&

(
)
&

*&
Ŵ . (1.73) 

We need ˆ!  to vanish at ! = 0 , so we must choose 

 

!

!̂ = ! +"
n
u,!( ),   "

n
u,!( ) =

!a
s
!( )

u
2s

s=1

n

" . (1.74) 

Thus 

 
d
2
Ŵ

d! 2
= u

2! +
3

4! 2
+
"
n
!( )

!

#
$
%

&
'
(
Ŵ . (1.75) 

As before, we seek a
s
!( )  so that !

n
"( ) =! "( ) +O u

#2n( ) . This implies 

 a
1
!( ) =

1

2! 3/2
" !( )

! 3/2
d!# , (1.76) 

with similar problems for subsequent coefficients. 
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 Next consider case III 

 
d
2
W

d! 2
=

u
2

4!
+
" 2 #1

4! 2
+
$ !( )
!

%
&
'

('

)
*
'

+'
W . (1.77) 

Olver’s expansions are of the form 

 W u,!( )~!1/2I" u!1/2( )
A
s
!( )

u
2s

s=0

#

$ %
! I"+1 u!

1/2( )
u

B
s
!( )

u
2s

s=0

#

$ . (1.78) 

Instead we try a Cherry-type expansion 

 Ŵ u,!( )~ d!̂ / d!( )
"1/2

!̂1/2I# u!̂1/2( ) , (1.79) 

where 

 

!

!̂ = ! +"
n
u,!( ),   "

n
u,!( ) =

!a
s
!( )

u
2s

s=1

"

# . (1.80) 

We find that 

 a
1
!( ) =

2

!1/2
" t( )

t
1/2

dt
0

!

# , (1.81) 

with the other coefficients also being analytic at ! = 0 . 
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Possible extensions: Convergent expansions. 


